Professional athletes not immune to influenza — just ask the Red Sox

The influenza virus affects millions of people each year. It also accounts for tens of thousands of deaths primarily among elderly, infirm patients and children with chronic illnesses. It also has tremendous impact on productivity in the workplace. Recently, that impact became evident by the direct effect of the influenza virus on the Boston Red Sox lineup.

There are multiple types of the influenza virus that can change their genetic footprint. These changes make immunization a challenging guessing game each year to predict what strains will have the most impact.

Immunization consists of administering a weakened form of the virus allowing the immune system to build up antibodies against a potential infection. Infections can spread quickly among individuals living in close proximity, such as in dormitories.

Typical symptoms include: fever, cough, nasal congestion, nausea, vomiting, joint pain and headache. These symptoms can persist for days or weeks. Treatment is best described as symptomatic with fluid replacement to avoid dehydration and medications to bring down a fever. More recently, antiviral medications are helpful if they are taken soon enough.

Flu season in the United States extends from October to May with peak frequency in February. Unfortunately, baseball spring training begins at the height of flu season and precautions need to be taken to avoid spread if an individual athlete begins to show symptoms.

Like many workers, baseball players are afraid that they may be risking their positions and may force themselves to come to work when ill. This puts other team members at risk.

Clearly the initially-infected athlete was not identified and isolated on the Boston Red Sox team. This has led to numerous players missing time in the starting lineup. Sanitizing locker rooms and avoiding excessive personal contact will avoid prolongation and recurrence.

An outbreak of influenza can slow workplace productivity, even in professional sports.

Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu

Mental training an important part of recovery

Recovery from an injury or illness of any type can be challenging. It is especially difficult for an athlete who is accustomed to performing at a high level. Incorporating a regimen of mental training can speed recovery and possibly even improve pre-injury performance.

The concept of neuroplasticity involves the ability of the human brain to recover after injury. This is most commonly seen after a stroke or traumatic brain injury. Early rehabilitation will limit the extent of permanent damage by allowing new pathways to compensate for those that were injured.

One of the biggest challenges when going through rehabilitation is that suddenly a patient will have time available that they did not have before. That time element must be managed carefully in a positive sense or it can lead to depression, anxiety and slowed or incomplete recovery.

Mature athletes accept that injury is part of sports and rehabilitation is part of the experience. These athletes often return to successful careers. Unfortunately, some athletes are consumed by the injury and never return.

Among the most notable success stories are those of Peyton Manning and Adrian Peterson, who both returned from serious injuries to have great seasons.

The key elements to the mental aspect of injury recovery include: setting realistic goals, positive self-talk, relaxation and visualization. The visualization component is the most intriguing and difficult.

Visualizing a task in great detail can activate neural pathways from the visual cortex to the motor strip of the human brain. This has been confirmed in recent studies performed with functional MRI imaging. The regular practice of visualizing the throwing motion in detail after a shoulder injury has proven to shorten recovery when the physical ability returns.

The mental aspects of recovery from any injury should not be ignored.

Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu

Recovering from a concussion even more difficult in baseball

Concussions are typically associated with high-velocity collision sports. Although baseball is a limited-contact sport, athletes who suffer concussions have a difficult challenge when attempting to return to their pre-injury level of performance.

A concussion is a clinical syndrome of neurological impairment that results from a biomechanical force that is applied to the brain. It is a disruption of the complex circuitry that makes up the human nervous system.

Typical symptoms include headache, dizziness, visual changes, loss of consciousness and incoordination. Symptoms typically improve within 10 days of the injury if there are no other conditions that may prolong recovery.

In a recent study, functional MRI images were performed while an athlete was trying to identify what pitch was being thrown. This study demonstrated that multiple regions of the brain must be involved in a hitting decision. The number of areas involved increases as the number of potential pitches increases.

Since 2011, Major League Baseball has been tracking concussions in both the major and minor leagues. Two recent publications looking at this data have both confirmed previous beliefs and raised new questions.

In the 2011 and 2012 seasons, 41 concussions were reported in the major leagues and 266 in the minors. Fielding injuries accounted for 163 of the concussions with catchers being disproportionately at risk with 40.8% of concussions in the majors and 47.6% in the minors. The average time to return was between eight and 10 days.

In another study, concussed batters were compared to a control group. Interestingly, batting averages, on-base percentages and slugging percentages were significantly lower in the concussed group. These numbers did not recover to the pre-concussion performance level until four to six weeks after return.

Although recovery time for concussed baseball players is consistent with other sports, regaining the skill to effectively hit a baseball may require significantly more time.

Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu

Bioengineering could help orthopedic injuries

Bioengineering is the term best used to describe the utilization of multiple disciplines to solve a health-related problem. The incorporated disciplines involved often include medicine, life sciences, mathematics and engineering.

Most recently, bioengineering has emerged as a potential solution for many orthopedic injuries, including those related to sports. Some of the most promising research has been in the area of tendon and ligament regeneration.

Anterior cruciate ligament injuries are among the most common and disabling sports-related injuries. According to the American Orthopedic Society for Sports Medicine, there are approximately 150,000 ACL tears each year. These injuries account for approximately $500 million in health care costs annually in the United States.

The knee is a hinged joint where the femur and tibia articulate. The bony surfaces are cushioned by cartilage. Four main ligaments hold the entire joint together: the ACL, posterior cruciate ligament, medial collateral ligament and the lateral collateral ligament.

ACL injuries are most common in high-intensity sports, including soccer, football and basketball. Damage can result from sudden changes in direction, landing awkwardly after jumping or direct impact from a collision.

Bioengineering is being used to build new ligaments by applying stem cells to a scaffold and allowing the cells to generate a new ligament or through the application of stem cells to allow a ligament to be repaired.

"The use of stem cells, osteobiologics and biodegradable synthetic polymers is the frontier of sports medicine surgery and surgical augmentation," said Dr. Cory Edgar, assistant professor of orthopedic surgery and UConn team physician. "These approaches will significantly impact surgery success rates, recovery times and return-to-play timelines."

The routine use of bioengineered tendon repair may not be far off.

Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu

Rib fracture is most common serious injury to chest

Fractured ribs are commonly associated with collisions, falls or other forms of trauma. These injuries can lead to extended periods of disability in athletes.

The human rib cage consists of 24 ribs (12 on each side) connected to a bone in the center of the chest called the sternum and attached in the back to the thoracic vertebrae. There are muscles, nerves and connective tissue located between the ribs.

The rib cage is designed to protect vital organs including the heart, lungs and major blood vessels. It is also an important functional component as part of the respiratory system. The rib cage will expand and contract with each breath.

Fractured ribs in adults are most commonly the result of falls and motor vehicle accidents. In young people these injuries result from blunt trauma associated with athletic injuries. The middle and lower ribs are most often injured. The involved trauma is often a sudden, high impact to a small focal area such as that inflicted by an elbow or a baseball.

Rib fractures are the most common serious injury to the chest. Severe fractures can result in a punctured lung. Multiple fractures can cause a condition called flail chest that will diminish the ability to effectively exchange air. Intense pain is the most common initial symptom. The pain intensifies with breathing, coughing or any activity that requires movement of the chest wall.

Treatment involves the use of rest, ice and pain medication. Pain medication can range from non-steroidal anti-inflammatory medications to narcotics.

An ongoing study at St. Francis Hospital and Medical Center in Hartford involves the comparison of current medical treatment including narcotics versus marijuana administered in a fixed-dose pill form.

"Rib fractures are an excellent condition for this trial since it fairly predictably results in pain that improves in six weeks and resolves in eight weeks," reports Dr. James Feeney, associate director of trauma and principal investigator for the study.

Returning to sports after a rib fracture can be expedited with early recognition and effective treatment.

Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu

Avoid long-term use of narcotics for chronic nerve pain

Chronic pain has become an accepted complication of a career in high-velocity collision sports and combat sports. Unfortunately, the pain doesn't end with retirement and in fact can intensify with age. Novel approaches to treatment are needed to avoid chronic use of opiate medications.

The human nervous system is divided into the central nervous system and the peripheral nervous system. The central nervous system consists of the brain and spinal cord. The peripheral nervous system is made up of the nerves that extend from the spinal cord to the muscles, joints and skin.

Pain is transmitted via signals from peripheral receptors to the brain where they are interpreted. Peripheral nerve pain from contact sports is often the result of direct trauma or stretching of large nerve trunks.

Trauma to sensory nerves can result in sensory loss. Often, injured sensory nerves will typically transmit misinformation called paresthesias. These "perversions" of sensation are typically described as burning, crawling, tingling or pins and needles. They can escalate from being an annoyance to debilitating.

The key element in treating chronic pain is to avoid the use of narcotics or other habit-forming medications since they are not a long-term solution. Opiates and other narcotics are designed for short-term therapy only.

Non-pharmacologic treatments in the form of mindfulness meditation, regular aerobic exercise and yoga are accepted approaches. Acupuncture also has been reported to show significant benefit in reducing pain for some patients.

Non-narcotic medications are often successful in treating chronic pain. Antiepileptic drugs as well as antidepressants are designed to treat conditions that affect the brain by altering brain chemistry. These medications also are effective in treating chronic pain.

Non-narcotic treatment of chronic pain demands a multidimensional approach for the best chance of success.

Further research into innovative approaches for the long-term treatment of pain, including the role of cannabis, is necessary.

Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu

Oregon athletes show dangers of overtraining

Athletes can sometimes become so focused on accomplishing a particular goal that the warning signs of potential injury are ignored. This was the case last week at the University of Oregon where four football players were hospitalized after an offseason workout.

Organized training during the offseason has become common at many levels of sport. Gone are the days when athletes would shift their focus to work and school after a season ended only to resume activity several months prior to the upcoming regular competition.

Much of the responsibility for the physical training of athletes has fallen into the hands of a growing group of strength and conditioning coaches. Credentials for these specialists fall into a variety of realms, including highly trained exercise physiologists, athletic trainers and physical therapists. 

Unfortunately, it is an area where certifications and appropriate credentials are not monitored and no state licenses or liability insurances are required for practitioners.

Prescribed workouts should not be one-size-fits-all recipes for making an individual or a team tougher and able to perform herculean tasks. Although many cite the military as the model for extreme workouts, they fail to note that there are severe consequences for commanding officers who ignore the human limits to training that result in permanent injury or death of a recruit.

In the case of the athletes in Oregon, it appears that the workouts crossed the fine line between training and torture. Those athletes' muscles began to break down due to increased energy demands and inability to supply necessary nutrients to large muscle groups. This resulted in a condition known as rhabdomyolysis where the muscle breaks down and the toxic products of that breakdown cause kidney failure. A key sign of this condition is darkened urine.

Many parents have bought into the belief that intense offseason workouts will increase their child's chances to play sports at a high level. Although this may be true, interviewing the person leading these workouts, checking their credentials, and making sure a child is enjoying these activities can avoid a potential disaster.

Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu

Safety, preparation vital for combat sport participants

Combat sports are among the fastest growing sports worldwide. Previously, this category of sports was restricted to boxing but has now expanded to karate, jiu-jitsu, kickboxing, judo and wrestling. These additional disciplines have come to be known as mixed martial arts (MMA).

The popularity of MMA should not come as a surprise. It has broad appeal to practitioners of these various combat forms as well as fans. Interestingly, the origins of combat sports in general date back to 400 B.C. when the participants were primarily slaves who were trying to win their freedom. Those contests often ended with the death of one opponent.

The ancient practice was eventually banned, not due to safety issues but because the contests had become so popular that spectators were not getting any work done.

Despite today's concern over the safety of these sports, there is a wide variation regarding regulation in the United States and internationally. Connecticut has become one of the strictest states to obtain a license to fight professionally. These regulations have evolved over years of experience at the state level and, more recently, at the Mohegan and Mashantucket Pequot Tribal nations.

The health regulations include blood screening for HIV, Hepatitis B and Hepatitis C every six months. Annual physical exams in addition to those performed at the fight venue are required. An EKG must also be performed annually. This encourages combat sport athletes to establish care with a primary care physician.

Particular attention is paid to neurologic impairment. Participants are required to have either an MRI or CT of the brain at some time in their career. In addition, an annual examination by a board-certified neurologist is required to assess any previous brain damage.

"Establishing a core set of health requirements and sharing them with other jurisdictions has been a priority," reports Mr. Michael Mazzulli, Director of the Mohegan Tribe Department of Athletic Regulation. Mr. Mazzulli and his team now travel internationally to regulate MMA events.

Safety and careful preparation are imperative for combat sports participation at any level.

Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu