Boston Red Sox second baseman Dustin Pedroia was placed on the disabled list Tuesday after spraining his wrist during a game against the Chicago White Sox on Monday. Peoria’s case is not uncommon since hand and wrist injuries account for up to 25 percent of all sports-related injuries, according to a study published in the Journal of Orthopaedic Surgery and Research last year.
Another recent study revealed that 14.8 percent of youth athletes have suffered upper extremity injuries and 9 percent of those involved the wrist. These injuries account for a significant number of emergency room visits. The correct diagnosis and treatment of wrist injuries can be challenging and lead to extended periods of inactivity and rehabilitation.
The wrist joint is a complex joint that is formed by the connection of the forearm to the hand. The principal forearm bones are the ulna and radius. Although there are eight carpal bones in the hand, only the scaphoid and lunate directly articulate with the radius and ulna.
These bones are held together by a series of ligaments that permit free movement of the joint. The median, ulnar and radial nerves are the principal nerves that innervate the hand. These nerves are intimately associated with the bones and ligaments as they traverse the wrist.
The most common injuries to the wrist are fractures, ligamentous injuries (loose ligaments) and tendonitis. A typical mechanism for an acute injury is falling on an outstretched hand, which is how Pedroia was injured. Although this happen in any sport, it is especially common in snowboarding and contact sports.
Chronic injuries are commonly seen in overuse. These are the result of repetitive movements often seen in racquet sports, golf and gymnastics.
Particular attention should be paid to young athletes who are more prone to overuse injuries as the wrist joints develop.
“Wrist injuries can be worse than you think,” reports Dr. Joel Ferreira, Assistant Professor of Orthopaedics at UConn. “An injury that may feel like a sprain may actually be a fracture or a severe ligament tear. Persistent injuries should be evaluated by a physician with special training and access to advanced imaging techniques.”
Sports-related wrist injuries can lead to long-term disability if not treated properly.
Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu
Even professional athletes not immune to the yips
Some athletes have faced the sad situation where, for no apparent reason, they suddenly lose the ability to perform a basic skill that was previously effortless. Although most commonly seen in golf and baseball, it also has been known to occur in place-kickers and musicians who have reached the highest levels in their fields.
Commonly known as the “yips,” the cause and treatment continue to elude physicians, psychologists and other sports medicine specialists. There is no consensus regarding a physical or psychological origin of this problem. In baseball, the yips have detoured the careers of Rick Ankiel, Steve Sax and Chuck Knoblauch to name a few.
Many specialists believe the yips are the result of a movement disorder best classified as a focal dystonia. The most common example of a focal dystonia is writer’s cramp.
Movement disorders are neurologic disorders that affect the brain’s ability to execute smooth, coordinated movements. The brain consists of a variety of regions that contribute to movement. These include the cortex, basal ganglia and brain stem. Communication among these areas is accomplished through neurochemicals. Any imbalance in these substances will result in an abnormality.
One part of this chain of activity that is believed to play a crucial role in the yips is proprioception. This is the ability for the brain to recognize the position of an extremity in space. A change in the usual position of the arm when throwing may be the initial disruption of the chain of events.
“Sensorimotor retraining exercises, oral medications and Botox injections can help with the dystonia,” reports Dr. Bernardo Rodrigues, a neurologist specializing in the treatment of movement disorders at UConn. “In some cases, Deep Brain Stimulation (DBS) surgery can also be offered to aggressively treat this condition.”
The yips may be more than a psychological condition and treatment with appropriate medications can possibly revive a failing career.
Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu
Commonly known as the “yips,” the cause and treatment continue to elude physicians, psychologists and other sports medicine specialists. There is no consensus regarding a physical or psychological origin of this problem. In baseball, the yips have detoured the careers of Rick Ankiel, Steve Sax and Chuck Knoblauch to name a few.
Many specialists believe the yips are the result of a movement disorder best classified as a focal dystonia. The most common example of a focal dystonia is writer’s cramp.
Movement disorders are neurologic disorders that affect the brain’s ability to execute smooth, coordinated movements. The brain consists of a variety of regions that contribute to movement. These include the cortex, basal ganglia and brain stem. Communication among these areas is accomplished through neurochemicals. Any imbalance in these substances will result in an abnormality.
One part of this chain of activity that is believed to play a crucial role in the yips is proprioception. This is the ability for the brain to recognize the position of an extremity in space. A change in the usual position of the arm when throwing may be the initial disruption of the chain of events.
“Sensorimotor retraining exercises, oral medications and Botox injections can help with the dystonia,” reports Dr. Bernardo Rodrigues, a neurologist specializing in the treatment of movement disorders at UConn. “In some cases, Deep Brain Stimulation (DBS) surgery can also be offered to aggressively treat this condition.”
The yips may be more than a psychological condition and treatment with appropriate medications can possibly revive a failing career.
Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu
Spinal fusion surgery helping athletes extend careers
Spinal fusion procedures have become increasingly common. Among the patients who have undergone this procedure are athletes with spinal injuries, including Peyton Manning and Tiger Woods. This has allowed them to extend careers that would have ended without modern surgical techniques.
The human spine consists of a system of nerves, bones, cartilage and ligaments divided into the cervical, thoracic and lumbar segments. The cervical segment is the uppermost segment and the lumbar is the lowest.
The vertebrae are bones that surround and protect the spinal cord and nerve roots. Cartilage provides cushioning between the vertebrae. Ligaments that allow the spinal segment to bend and twist hold the vertebrae and cartilage together.
Spinal injuries typically result in extreme amounts of pain given the intimate association with nerves. These injuries include fractures of bone and cartilage, as well as displacement of the cartilaginous discs that can impinge on the nerve roots. Repetitive trauma to the spinal elements can result in arthritis that will narrow the passages through which the nerve roots exit.
Often surgery is required to alleviate these conditions. Multiple surgeries will eventually alter the complex mechanics involved in coordinating spinal movement.
Spinal fusion involves joining bony vertebrae together with the use of metal plates and screws as well as bony fragments that eventually form a solid body of one or more levels. This will result in diminished flexibility and range of motion at those levels.
“With modern surgical techniques, many athletes of all levels can return to sports after one or two level lumbar (low back) and cervical (neck) fusions. Prior to return to sport it must be confirmed that the bone has successfully healed, which can take up to one year from the time of surgery” said Dr. Isaac Moss, assistant professor of orthopaedic and neurosurgery at UConn. “The most significant determinants of return to sport are usually the patient’s preoperative level of function and the extent of surgery required to fix the problem. I recommend that patients be upfront with their surgeon prior to surgery and discuss their functional goals once they have recovered to make sure that the optimal surgical procedure is selected and their post-op expectations are realistic.”
Spinal fusion does not have to be a game-ending condition.
Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu
The human spine consists of a system of nerves, bones, cartilage and ligaments divided into the cervical, thoracic and lumbar segments. The cervical segment is the uppermost segment and the lumbar is the lowest.
The vertebrae are bones that surround and protect the spinal cord and nerve roots. Cartilage provides cushioning between the vertebrae. Ligaments that allow the spinal segment to bend and twist hold the vertebrae and cartilage together.
Spinal injuries typically result in extreme amounts of pain given the intimate association with nerves. These injuries include fractures of bone and cartilage, as well as displacement of the cartilaginous discs that can impinge on the nerve roots. Repetitive trauma to the spinal elements can result in arthritis that will narrow the passages through which the nerve roots exit.
Often surgery is required to alleviate these conditions. Multiple surgeries will eventually alter the complex mechanics involved in coordinating spinal movement.
Spinal fusion involves joining bony vertebrae together with the use of metal plates and screws as well as bony fragments that eventually form a solid body of one or more levels. This will result in diminished flexibility and range of motion at those levels.
“With modern surgical techniques, many athletes of all levels can return to sports after one or two level lumbar (low back) and cervical (neck) fusions. Prior to return to sport it must be confirmed that the bone has successfully healed, which can take up to one year from the time of surgery” said Dr. Isaac Moss, assistant professor of orthopaedic and neurosurgery at UConn. “The most significant determinants of return to sport are usually the patient’s preoperative level of function and the extent of surgery required to fix the problem. I recommend that patients be upfront with their surgeon prior to surgery and discuss their functional goals once they have recovered to make sure that the optimal surgical procedure is selected and their post-op expectations are realistic.”
Spinal fusion does not have to be a game-ending condition.
Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu
Subscribe to:
Posts (Atom)