Muscular dystrophy is a progressive disorder that results in severe disability and in some forms, death. The fact that it targets muscle and causes wasting and weakness makes the announcement this month that a competitive PGA Tour golfer has been suffering from a form of muscular dystrophy for more than a year amazing.
Morgan Hoffman is a 28-year-old professional golfer who in November, 2016, was diagnosed with Fascioscaphohumeral Muscular Dystrophy (FSHD). He recounts his odyssey in a first person account in The Players’ Tribune beginning with his earliest symptom of wasting of his right pectoral (chest) muscle in 2011.
Muscular dystrophy was first described in the mid-1800s as a progressive wasting of muscles seen in male members of the same family. This eventually became known as Duchenne Muscular Dystrophy, the most well-known and deadly of this category of diseases.
FSHD is a variation of muscular dystrophy that targets the face, arms and chest muscles. It does not affect respiratory or cardiac muscles, thus it does not limit a person’s longevity. It does result in profound weakness, making a continued successful career in professional sports remarkable.
Physical therapy should be aimed towards optimizing function of unaffected muscles. Overworking involved muscles will not improve strength but will lead to painful muscle cramps. Non-steroidal anti-inflammatory drugs can be used if pain is a factor.
“Isolation of the gene involved in some forms of FSHD on chromosome 4 has lead to exciting research and hopefully a genetic treatment for FSHD,” reports Catherine Alessi, MD, a neuromuscular fellow at the University of Connecticut.
Golf requires core strength and careful coordination of upper and lower extremity muscles making Hoffman’s success noteworthy and encouraging for others.
Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu
Steelers’ Shazier suffered a spinal concussion
Last week, Pittsburgh Steelers’ linebacker, Ryan Shazier, attempted to tackle an opposing player with his head down. This position transmitted sudden pressure from the brain to the spinal canal and resulted in paralysis. This type of non-penetrating spinal trauma is also known as a spinal concussion.
A concussion is a syndrome of immediate and transient neurologic impairment that results from a biomechanics force being applied to the nervous system.
Although the term has become synonymous with a brain injury, it can also be applied to the spinal cord.
The spinal cord contains an extensive network of nerve tracts that provide sensory and motor function to the extremities. It is divided into the cervical, thoracic, lumbar and sacral levels. The uppermost cervical level contains fibers extending to both the upper and lower extremities.
Like brain concussion, spinal concussion is the mildest form of trauma when considering a range that extends to penetrating trauma as the most severe form. Mild injuries typically do not produce any changes on CT scans or other imaging studies.
The pathology involved in this type of trauma is typically severe inflammation and swelling. There is a response to cellular injury where electrolytes that typically reside outside the cell rush inward through a breech in the nerve cell membrane causing swelling within the cell and eventual cell death.
Typical symptoms are immediate sensory loss and paralysis of the affected limbs. Careful positioning and stabilization of the spine are critical on the field, followed by ambulance transport to a hospital. Hospital care includes imaging with CT or MRI and may include treatment with steroids to reduce swelling.
Fortunately, most spinal concussions, like brain concussions, can fully resolve with little to no permanent damage. Hopefully, this is also the case for Shazier.
Editor’s note: The Steelers placed Shazier on injured reserve on Tuesday. The 25-year-old Shazier underwent spinal stabilization surgery last week and remains in the hospital.
Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu
A concussion is a syndrome of immediate and transient neurologic impairment that results from a biomechanics force being applied to the nervous system.
Although the term has become synonymous with a brain injury, it can also be applied to the spinal cord.
The spinal cord contains an extensive network of nerve tracts that provide sensory and motor function to the extremities. It is divided into the cervical, thoracic, lumbar and sacral levels. The uppermost cervical level contains fibers extending to both the upper and lower extremities.
Like brain concussion, spinal concussion is the mildest form of trauma when considering a range that extends to penetrating trauma as the most severe form. Mild injuries typically do not produce any changes on CT scans or other imaging studies.
The pathology involved in this type of trauma is typically severe inflammation and swelling. There is a response to cellular injury where electrolytes that typically reside outside the cell rush inward through a breech in the nerve cell membrane causing swelling within the cell and eventual cell death.
Typical symptoms are immediate sensory loss and paralysis of the affected limbs. Careful positioning and stabilization of the spine are critical on the field, followed by ambulance transport to a hospital. Hospital care includes imaging with CT or MRI and may include treatment with steroids to reduce swelling.
Fortunately, most spinal concussions, like brain concussions, can fully resolve with little to no permanent damage. Hopefully, this is also the case for Shazier.
Editor’s note: The Steelers placed Shazier on injured reserve on Tuesday. The 25-year-old Shazier underwent spinal stabilization surgery last week and remains in the hospital.
Dr. Alessi is a neurologist in Norwich and serves as an on-air contributor for ESPN. He is director of UConn NeuroSport and can be reached at agalessi@uchc.edu
Subscribe to:
Posts (Atom)